Structure Reports

Online
ISSN 1600-5368

Wen-Jun Zhang,* Zhong-Yu Duan and Xin Zhao

Hebei University of Technology, Tianjin 300130, People's Republic of China

Correspondence e-mail:
zhang_wenjun99@163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.055$
$w R$ factor $=0.165$
Data-to-parameter ratio $=13.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(E)-4-[4-(4-Chlorobenzyloxy)-3-ethoxy-benzylideneamino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

The title compound, $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{3}$, was prepared by reacting 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one and 4-(4-chloro-benzyloxy)-3-ethoxybenzaldehyde. The central ethylvanillin group makes dihedral angles of 63.00 (11), 31.83 (7) and 74.47 (8) ${ }^{\circ}$ with the chlorobenzene ring, the pyrazolone ring and the terminal phenyl ring, respectively. Packing is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds that form centrosymmetric dimers.

Comment

Schiff base ligands have received a good deal of attention in the development of coordination chemistry for more than 100 years (Kahwa et al., 1986). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes (Han \& Zhen, 2005; Shi, 2005). In the present study we report the synthesis and molecular structure of such a compound, (I).

(I)

In the title molecule (Fig. 1), bond lengths and angles are within normal ranges. The central ethylvanillin group (C8$\mathrm{C} 13 / \mathrm{C} 16 / \mathrm{O} 1 / \mathrm{O} 2$) is planar, with an r.m.s. deviation for fitted atoms of $0.0224 \AA$, and it makes dihedral angles of 63.00 (11), 31.83 (7) and $74.47(8)^{\circ}$ with the benzene ring (C1-C6), the pyrazolone ring ($\mathrm{C} 17 / \mathrm{C} 18 / \mathrm{N} 2 / \mathrm{N} 3 / \mathrm{C} 21 / \mathrm{N} 1 / \mathrm{O} 3$) and the terminal phenyl ring (C22-C27), respectively. The pyrazolone ring is also almost planar, with an r.m.s. deviation for fitted atoms of $0.0370 \AA$. It makes a dihedral angle of $48.41(9)^{\circ}$ with the terminal phenyl ring. The crystal packing is stabilized by weak non-classical intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds (Table 1) that form centrosymmetric dimers (Fig. 2).

Experimental

An anhydrous (99.5\%) ethanol solution of 4-(4-chlorobenzyloxy)-3ethoxybenzaldehyde ($2.91 \mathrm{~g}, 10 \mathrm{mmol}$) was added to an anhydrous ethanol solution of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one $(2.03 \mathrm{~g}, 10 \mathrm{mmol})$ and the mixture stirred at 350 K for 3 h under nitrogen, whereupon a yellow precipitate appeared. The product was then isolated and recrystallized from ethanol, and dried in vacuo to give pure (I) in 82% yield. Yellow single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Received 8 May 2006
Accepted 9 June 2006
\qquad

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{3}$	$V=1226.1(4) \AA^{3}$
$M_{r}=475.96$	$Z=2$
Triclinic, $P \overline{1}$	$D_{x}=1.289 \mathrm{Mg} \mathrm{m}^{-3}$
$a=10.019(2) \AA$	Mo $K \alpha$ radiation
$b=10.355(2) \AA$	$\mu=0.19 \mathrm{~mm}^{-1}$
$c=12.824(3) \AA$	$T=294(2) \mathrm{K}$
$\alpha=77.080(4)^{\circ}$	Block, yellow
$\beta=83.710(4)^{\circ}$	$0.34 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.928, T_{\text {max }}=0.963$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0704 P)^{2}\right. \\
& +0.1725 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.003 \\
& \Delta \rho_{\text {max }}=0.41 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

$S=1.05$
4299 reflections
310 parameters

H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.60	$3.395(4)$	144

Symmetry code: (i) $-x,-y-1,-z+1$.
All H atoms were included in calculated positions and refined using a riding-model. Constrained $\mathrm{C}-\mathrm{H}$ bond lengths and isotropic $U_{\text {iso }}(\mathrm{H})$ parameters: $0.93 \AA$ and $1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic, $0.97 \AA$ and $1.2 U_{\text {eq }}(\mathrm{C})$ for methylene, and $0.96 \AA$ and $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

This project was supported by Hebei Provincial Natural Science Foundation of China (project grant No. 2005000007).

References

Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1
The structure of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Figure 2
A view, down the c axis, of the packing arrangement in the crystal structure of (I). Intermolecular hydrogen bonds are represented by dashed lines.

Han, J.-R. \& Zhen, X.-L. (2005). Acta Cryst. E61, o3815-o3816.
Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. \& Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and SHELXTL. University of Göttingen, Germany.
Shi, J. (2005). Acta Cryst. E61, o4023-o4024.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

